Some preliminary results on BB experiments at SPS in 2008

G. Sterbini

CFRN AT-MCS-MA FPFI SB-IPFP-I PAP

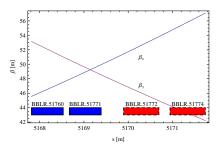
24th September 2008

Thanks to J.-P. Koutchouk, F. Zimmermann, R. Calaga, U. Dorda, R. Tomàs, K. Cornelis and E. Laface

Outline

- Introduction to the experimental setup
- 2 Experimental results
- Some conclusions

This year we had 5 MDs in the SPS (in parallel with other users) for beam-beam studies. We may have one more MD session in next months.

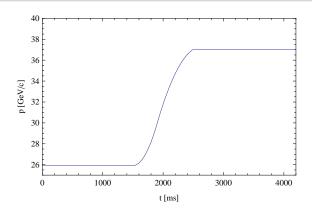

In SPS we have 4 wires grouped in two families:

- BBLR1 (2 wires, each one is 60 cm long) (FIXED)
- BBLR2 (2 wires, each one is 60 cm long) (MOVABLE).

For each family there is one power supply .

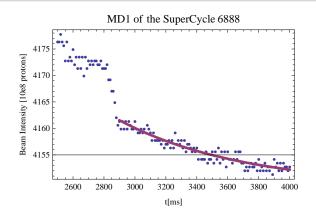
The layout...

The BBLR1 are in BLUE, the BBLR2 are in RED.

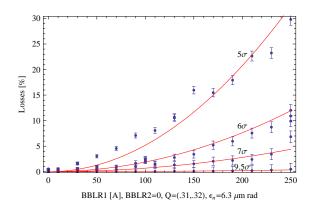

Some SPS parameters...

- beam species : Proton
- beam momentum: 37 GeV/c
- chromaticities: ≈ 3
- rms normalized emittances: 4-6 μ m rad ($\epsilon_n = \frac{\sigma^2 \gamma}{\beta}$)
- no. of bunches: 12
- average no. of particles per bunch: ≈3e10
- rms bunch length: ≈4 ns
- γ_t : 22.81
- RF frequency: 200.4 MHz
- Harmonic number: 4620
- RF voltage: 2.63 MV.

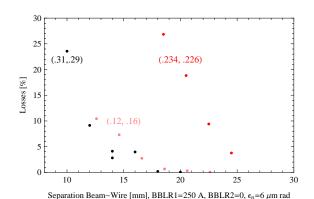
The flattop at 37 GeV/c is 1.7 s long



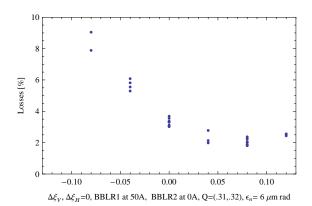
We used the flattop at 37 Gev/c (1.7 s): the cycle lasts 4 s and the SuperCycle \approx 50 s.


Our fundamental observable...

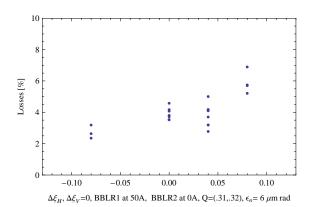
OBSERVABLE: losses between 2900 and 4000 ms (it corresponds to wire's flattop).


Current scan at different distances

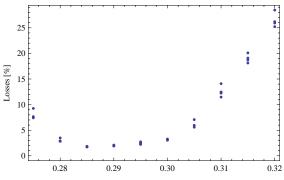
The 2-dimensional fit proposed is $0.077e^{-D}I^2$ (where D is the separation beam wire (in σ) and I is the wire current (in A)).

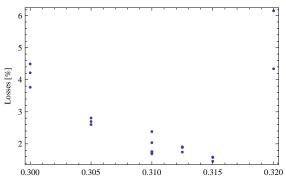

(ERN)

Tune scan at different distances



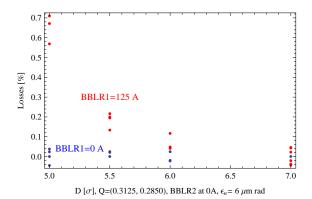
Vertical chromaticity scan


Horizontal chromaticity scan

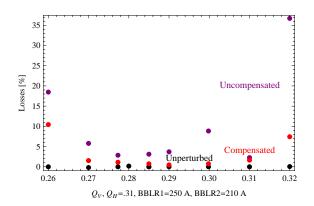


Vertical tune scan

 Q_V , Q_H =.31, BBLR1 at 250A, BBLR2 at 0A, ϵ_n = 6 μ m rad, D=5 σ


Horizontal tune scan

 Q_H , Q_V =.285, BBLR1 at 250A, BBLR2 at 0A, ϵ_n = 6 μ m rad, D=5 σ


Distance scan with optimized tunes

- 《ロ》 《御》 《意》 《意》 - 意 - 夕久(?)

Compensation as function of the tunes

- The analysis of the results is still on going
- The simulation study for reproducing them still to be planned
- The data seem to confirm that the WP is crucial (1 order of magnitude on the effect)
- The data seem to confirm that the chromaticity does play a relevant role
- The compensation 250-210 A is very strange: more calibration studies required (next MD?)
- The compensation depends on the tunes...